0 Sejarah Matematik

Lihat garis masa matematik untuk garis masa peristiwa-peristiwa matematik. Lihat senarai ahli matematik untuk sebuah senarai biografi ahli matematik. Perkataan "matematik" berasal daripada perkataan Yunani, μάθημα (máthema), yang bermakna "sains, ilmu, atau pembelajaran"; μαθηματικός (mathematikós) bermaksud "suka belajar". Istilah ini kini merujuk kepada sejumlah ilmu yang tertentu -- pengajian deduktif pada kuantiti, struktur, ruang, dan tukaran. Sementara hampir semua kebudayaan menggunakan matematik asas (mengira dan mengukur), pengembangan matematik baru telah dilaporkan dalam beberapa kebudayaan dan zaman. Sebelum zaman moden dan peluasan ilmu di merata-rata dunia, contoh-contoh tulisan pengembangan matematik baru mengancam kegemilangan pada sebahagian orang tempatan. Kebanyakan teks matematik kuno yang dapat diperolehi datang dari Mesir purba di Kerajaan Tengah sekitar 1300-1200 SM (Berlin 6619), Mesopotamia sekitar 1800 SM (Plimpton 322), dan India kuno sekitar 800-500 SM (Sulba Sutras). Semua teks tersebut memberikan perhatian pada kononnya dipanggil Teorem Pythagoras, yang nampaknya pengembangan matematik terawal dan tersebar selepas aritmetik dan geometri asas. Bukti pertama yang benar aktiviti matematik di China dapat ditemui pada simbol berangka pada tulang keramat, yang bertarikh kira-kira 1300 SM [1] [2], sementara Dinasti Han di China Kuno menyumbangkan Buku Panduan Pulau Laut dan Sembilan Bab mengenai Seni Matematik dari abad ke-2 SM sehingga abad ke-2 M. Yunani dan kebudayaan keyunanian Mesir, Mesopotamia dan bandar Syracuse menambahkan ilmu matematik. Matematik Jainisme meyumbang dari abad ke-4 SM sehingga abad ke-2 Masihi, sementara ahli matematik Hindu dari abad ke-5 dan ahli matematik Islam dari abad ke-9 membuat penyumbangan banyak pada matematik.

Satu ciri menarik perhatian mengenai sejarah matematik kuno dan Zaman Pertengahan adalah pengembangan lanjut matematik mengikut dengan berapa abad stagnasi. Mulanya di Zaman Pertengahan Itali di abad ke-16, pengembangan matematik baru, berinteraksi dengan penemuan saintifik baru, telah dilakukan pada tahap yang sentiasa bertambahan, dan bersambungan ke hari ini.

Matematik Pada Awalnya

Lama sebelum rekod tertulis yang terawal, terdapat lukisan-lukisan yang menunjukkan pengetahuan tentang matematik dan pengukuran masa berasaskan bintang. Umpamanya, para ahli paleontologi telah menemui batuan-batuan oker di sebuah gua di Afrika Selatan yang dihiasi dengan corak-corak geometri tercakar yang wujud sejak dari kira-kira 70 milenium SM lagi. [1] Tambahan pula, artifak prasejarah yang ditemui di Afrika dan Perancis yang wujud sejak dari antara 35000 SM dan 20,000 SM menunjukkan percubaan-percubaan awal untuk mengukur masa. Bukti juga wujud bahawa penghitungan awal melibatkan kaum wanita yang menyimpan rekod-rekod kitaran haid mereka; umpamanya 28, 29, 30 cakar pada tulang atau batu, diikuti oleh garis mendatar. Tambahan pula, para pemburu memiliki konsep "satu", "dua", dan "banyak", serta juga gagasan "tiada" atau "sifar" apabila mempertimbangkan kawanan haiwan. [2][3]
Tulang Ishango yang ditemukan di kawasan hulu air Sungai Nile (Congo) telah wujud seawal 20,000 SM. Salah satu tafsiran yang biasa adalah bahawa tulang itu merupakan bukti jujukan-jujukan nombor perdana dan pendaraban Mesir kuno terawal yang diketahui. [4] Orang Mesir Pradinasti pada milenium ke-5 SM juga menggambarkan reka-reka bentuk ruang geometri. Telah didakwa juga bahawa monumen-monumen megalit dari seawal milenium ke-5 SM di Mesir dan kemudiannya monumen-monumen di England dan Scotland dari milenium ke-3 SM [5] menggabungkan gagasan-gagasan geometri seperti bulatan, elips, dan tigaan Pythagorus ke dalam reka bentuk mereka, serta juga mungkin memahami pengukuran masa berdasarkan pergerakan bintang-bintang. Sejak dari kira-kira tahun 3100 SM, orang Mesir memperkenalkan sistem perpuluhan terawal yang diketahui yang membenarkan pengiraan tak tentu melalui simbol-simbol yang baru. Pada kira-kira tahun 2600 SM, teknik-teknik pembinaan besar-besaran Mesir melambangkan bukan sahaja pengukuran (survei) tetapi juga membayangkan pengetahuan nisbah keemasan. Matematik terawal India kuno yang diketahui wujud sejak dari kira-kira 3000-2600 SM di Tamadun Lembah Indus (Tamadun Harappan) di India Utara dan Pakistan. India kuno mengembangkan:

sebuah sistem timbang dan ukur seragam yang mempergunakan sistem perpuluhan;
suatu teknologi bata yang maju yang menggunakan nisbah;
jalan-jalan raya yang diletakkan pada sudut tegak yang sempurna; dan
sebilangan bentuk dan reka bentuk geometri, termasuk bentuk-bentuk tempayan, kuboid, kon, silinder, serta lukisan-lukisan bulatan dan segi tiga sepusat dan bersilang.

Alat-alat matematik yang ditemukan termasuk sebatang pembaris perpuluhan yang tepat, dengan pembahagian-pembahagian kecil dan persis, sebuah alat kulit yang bertindak sebagai kompas untuk mengukur sudut-sudut pada permukaan satah atau pada ufuk dalam gandaan 40-360 darjah, sebuah alat kulit yang digunakan untuk mengukur 8–12 bahagian penuh ufuk dan langit, serta sebuah alat untuk mengukur kedudukan bintang bagi tujuan-tujuan pengemudian.
Skrip Indus masih tidak dapat ditafsirkan dan oleh itu, tidak banyak yang diketahui tentang bentuk tertulis matematik Harappan. Bukti arkeologi telah menyebabkan sesetengah ahli sejarah mempercayai bahawa tamadun ini menggunakan sistem berangka asas 8 dan memiliki pengetahuan tentang nisbah lilitan bulatan dengan diameternya , iaitu nilai π

Ahli matematik Mesir kuno (k.k. 1850 – 600 SM)

Matematik Mesir merujuk kepada matematik yang ditulis dalam bahasa Mesir. Dari tempoh Hellenistik, bahasa Yunani menggantikan bahasa Mesir bagi bagi bahasa penulisan sarjana Mesir, dan bermula detik ini matematik Mesir bergabung dengan Matematik Yunani dan Babylon, lalu memberikan matematik Hellenstik. Pembelajaran matematik di Mesir kemudian diteruskan bawah pemerintahan Khalifah Islam sebagai sebahagian matematik Islam apabila bahasa Arab dijadikan bahasa penulisan sarjana Mesir.

Teks matematik tertua buat masa ini papirus Moscow, sebagai sebahagian papirus Kerajaan Pertengahan Mesir bertarikh kk. 2000—1800 SM. Seperti teks matematik purba lain, ia mengandungi apa yang kita kenali sebagai "permasalahan perkataan" atau "cerita permasalahan", yang digunakan sebagai hiburan. Satu permasalahan dikira penting kerana ia memberikan cara untuk mencari isi padu frustum: "Jika kamu diberitahu: Sebuah piramid terpenggal yang 6 bagi ketinggian menegaknya dengan 4 bagi tapa dan 2 di atas. Kamu mengkuasa-duakan 4 ini akan menjadi 16. Kamu menggandakan 4, hasilnya 8. Kamu mengkuasa-duakan 2, hasilnya 4. Kamu menambahkan 16, 8, dan 4, hasilnya 28. Kamu ambil satu pertiga dari enam, hasilnya dua. Kamu ambil 28 dua kali, hasilnya 56. Tengok, ia 56. Kamu akan mendapatinya betul."

Papirus Rhind (kk. 1650 SM [3]) merupakan teks matematik utama lain, sebuah manual arahan dalam aritmetik dan geometri. Sebagai tambahan untuk memberi rumus luas dan kaedah bagi pendaraban, pembahagian dan menggunakan unit pecahan, ia juga mengandungi bukti bagi pengetahuan matematik lain (lihat [4]), termasuklah nombor gubahan dan perdana; min aritmetik, geometri dan harmoni; dan pemahaman mudah bagi kedua-dua Penapis Eratosthenes dan teori nombor sempurna (dinamakan, itu yang bernombor 6)[5]. Ia juga menunjukkan bagaimana untuk menyelesaikan persamaan linear tertib pertama [6] begitu juga dengan janjang aritmetik dan geometri [7].

Juga, tiga unsur geometri terkandung dalam papirus Rhind mencadangkan pembuktian termudah bagi geometri analisis: (1) paling pertama, bagaimana untuk mendapatkan penghampiran bagi π jitu hingga kurang dari satu peratus; (2) kedua, kerja purba mengkuasa-duakan bulatan; dan (3) ketiga, penggunaan paling awal bagi kotangen. Akhir sekali papirus Berlin (kk. 1300 SM [8] [9]) menunjukkan masyarakan Mesir purba mampu menyelesaikan persamaan algebra tertib kedua [10]

Ahli matematik Babylon kuno (k.k. 1800 – 550 SM)

Matematik Babylonia merujuk kepada mana-mana matematik orang Mesopotamia (Iraq kini) dari masa awal Sumer sehingga permulaan Zaman Keyunanian. Ia dinamai sebagai matematik Babylonia kerana peranan utama Babylon sebagai sebuah tempat pengajian. Bagaimanapun, tempat ini kemudian hilang sama sekali pada zaman Keyunanian dan sejak dari masa itu, matematik Babylon bergabung dengan matematik Yunani dan Mesir untuk menghasilkan matematik Keyunanian.

Berbeza dengan kekurangan sumber matematik Mesir, pengetahuan kita tentang matematik Babylonia berasal daripada melebihi 400 buah tablet lempung yang diekskavasi sejak dari dekad 1850-an. Dituliskan dalam skrip tulisan pepaku, tablet-tablet itu ditulis semasa tanah liatnya masih lembap dan dibakar di dalam ketuhar atau melalui haba matahari. Sesetengah tablet tersebut kelihatan merupakan kerja sekolah yang disemak. Kebanyakannya yang diekskavasi antara tahun 1800 SM hingga tahun 1600 SM merangkumi topik-topik yang termasuk pecahan, algebra, persamaan kuadratik dan persamaan kuasa tiga, serta juga penghitungan tigaan Pythagorus (sila lihat Plimpton 322). [7] Tablet-tablet itu juga merangkumi jadual-jadual pendaraban dan trigonometri, serta kaedah-kaedah untuk menyelesaikan persamaan-persamaan linear dan kuadratik. Tablet Babylonia YBC 7289 memberikan anggaran √2 yang tepat sehingga lima tempat perpuluhan.

Matematik Babylonia ditulis dengan menggunakan sistem angka perenampuluhan (asas-60). Berdasarkan ini, kita menerbitkan kegunaan 60 saat seminit, 60 minit sejam, dan 360 (60 x 6) darjah sebulatan. Kemajuan-kemajuan matematik Babylonia dipermudah oleh fakta bahawa nombor 60 mempunyai banyak pembahagi. Berbeza dengan orang Mesir, Yunani, dan Rom, orang Babylonia mempunyai sistem nilai tempat yang benar, dengan angka-angka yang ditulis pada lajur kiri mewakil nilai yang lebih besar, iaitu serupa dengan sistem perpuluhan. Bagaimanapun, mereka tidak mempunyai titik perpuluhan dan oleh itu, nilai tempat sesuatu simbol harus disimpul berdasarkan konteksnya.

Ahli matematik Cina kuno (k.k. 1300 SM – 200 Masihi)

Mulanya dari zaman Shang (1500—1027 SM), extant terawal matematik Cina mengandungi nombor-nombor yang dituliskan pada kerang kura-kura [11] [12]. Nombo-nombor ini menggunakan sistem perpuluhan, supaya nombor 123 dituliskan (dari atas ke bawah) sebagai lambang untuk 1 diikuti oleh angkanya untuk seratus, kemudian angkanya untuk 2 diikuti oleh angka untuk sepuluh, akhirnya angka untuk 3. Ini adalah sistem bilangan yang termaju di dunia dan membenarkan pengiraan diangkutkan pada suan pan atau sempoa Cina. Tarikh penciptaan suan pan tidak tentu, tetapi rujukan terawal adalah pada AD 190 pada Supplementary Notes on the Art of Figures yang ditulis oleh Xu Yue. Suan pan sudah tentu digunakan lebih awal dari tarikh ini.

Di China, pada 212 SM, Maharaja Qin Shi Huang (Shi Huang-ti) mengarahkan bahawa semua buku tersebut dibakarkan. Sedangkan arahan ini tidak dituruti dengan secara besar, sebagai akibatnya sedikit yang diketahui dengan tentu mengenai matematik Cina kuno. Dari Dinasti Zhou, karya matematik yang terlama yang telah diselamatkan dari pembakaran buku adalah I Ching, yang menggunakan 64 pilih atur sebuah garis pejal atau putus-putus untuk tujuan berfalsafah atau mistik.
Selepas tempoh pembakaran buku tersebut, Dinasti Han (206 BC—AD 221) menghasilkan karya matematik yang dianggapkan berkembang pada karya-karya yang hilang sekarang. Yang terpenting dari kesemuanya adalah Sembilan Bab pada Kesenian Matematik. ia mengandungi masalah 246 perkataan, termasuk pertanian, perniagaan dan kejuruteraan dan termasuk bahan pada segi tiga kanan dan π.

Ahli matematik India kuno (k.k. 900 SM – 200 Masihi)

Shatapatha Brahmana (kk. kurun ke-9 SM) menganggarkan nilai π hingga dua tempat perpuluhan.[13] Sutra Sulba (kk. 800-500 SM) adalah teks geometri yang menggunakan nombor bukan nisbah, nombor perdana, dan petua tigaan dan punca kuasa tiga; mengira punca kuasa dua bagi 2 hingga lima tempat perpuluhan; memberikan kaedah bagi mengkuasa duakan bulatan; menyelesaikan persamaan linear dan persamaan kuadratik; mengembangkan trirangkap Pythagoras secara algebra dan memberikan bukti] pernyataan dan perangkaan bagi teorem Pythagoras.

Pāṇini (kk. abad ke-5 SM) merumuskan peraturan tatabahasa untuk Bahasa Sanskrit. Catatannya mirip dengan catatan matematik moden, dan menggunakan peraturan meta, transformasi, dan rekursi dengan canggihnya yang tatabahasanya mengadakan kuasa pengiraan bersamaan dengan mesin Turing. Karya Panini juga digunakan pada perintis teori moden bagi tatabahasa formal (penting dalam pengiraan), manakala bentuk Panini-Backus menggunakan oleh kebanyakan bahasa pengaturcaraan moden yang juga membawa maksud serupa dengan petua tatabahasa Panini. Pingala (kira-kira abad ke-3 SM-abad pertama SM) dalam karangan prosodi yang menggunakan peranti yang secocok dengan sistem berangka deduaan. His discussion of the combinatorics of meters, corresponds to the binomial theorem. Pingala's work also contains the basic ideas of Fibonacci numbers (called maatraameru). The Brāhmī script was developed at least from the Maurya dynasty in the 4th century BC, with recent archeological evidence appearing to push back that date to around 600 BC. The Brahmi numerals date to the 3rd century BC.

Between 400 BC and AD 200, Jaina mathematicians began studying mathematics for the sole purpose of mathematics. They were the first to develop transfinite numbers, set theory, logarithms, fundamental laws of indices, cubic equations, quartic equations, sequences and progressions, permutations and combinations, squaring and extracting square roots, and finite and infinite powers. The Bakshali Manuscript written between 200 BC and AD 200 included solutions of linear equations with up to five unknowns, the solution of the quadratic equation, arithmetic and geometric progressions, compound series, quadratic indeterminate equations, simultaneous equations, and the use of zero and negative numbers. Accurate computations for irrational numbers could be found, which includes computing square roots of numbers as large as a million to at least 11 decimal places.

Matematik Yunani dan Keyunanian (k.k. 550 SM – 300 Masihi)

Matematik Greek yang dikaji sebelum zaman keyunanian hanya merujuk kepada matematik Greece. Sebaliknya, matematik Greek yang dikaji sejak zaman keyunanian (sejak 323 SM) merujuk kepada semua matematik yang ditulis dalam bahasa Greek. Ini disebabkan matematik Greek sejak masa itu bukan hanya ditulis oleh orang-orang Greek tetapi juga oleh para cendekiawan bukan Greek di seluruh dunia keyunanianMediterranean. Matematik Greek dari saat itu bergabung dengan matematik Mesir dan Babylon untuk membentuk matematik keyunanian. Kebanyakan teks matematik yang ditulis dalam bahasa Greek telah ditemui di Greece, Mesir, Mesopotamia, Asia Minor, Sicily dan Itali Selatan. sehingga hujung timur

Walaupun teks matematik terawal dalam bahasa Greek yang telah ditemui ditulis selepas zaman keyunanian, banyak teks ini dianggap sebagai salinan karya-karya yang ditulis semasa dan sebelum zaman keyunanian. Bagaimanapun, tarikh-tarikh penulisan matematik Greek adalah lebih pasti berbanding dengan tarikh-tarikh penulisan matematik yang lebih awal, kerana terdapat sebilangan besar kronologi yang mencatat peristiwa dari setahun ke setahun sehingga hari ini. Walaupun demikian, banyak tarikh masih tidak pasti, tetapi keraguan adalah pada tahap beberapa dekad dan bukannya berabad-abad.

Matematik Greek dianggap dimulakan oleh Thales (k.k.. 624 — k.k. 546 SM) dan Pythagoras (k.k. 582 — k.k. 507 BC) walapun takat pengaruh mereka masih dipertikaikan. Mereka mungkin dipengaruhi oleh idea-idea Mesir, Mesopotamia, dan India. Thales menggunakan geometri untuk menyelesaikan masalah-masalah seperti mengira ketinggian piramid dan jarak kapal dari pantai. Menurut ulasan Proclus tentang Euclid, Pythagoras mengemukakan teorem Pythagorus dan membina tigaan Pythagorus melalui algebra. Adalah diaku secara umum bahawa matematik Greek berbeza dengan matematik jiran-jirannya dari segi desakannya terhadap bukti-bukti aksioman. [8]

Ahli-ahli matematik Greek dan keyunanian merupakan orang-orang pertama bukan sahaja untuk memberi bukti kepada nisbah (hasil usaha para penyokong Pythagorus), tetapi juga untuk mengembangkan kaedah menerusi habisan, serta saringan Eratosthenes untuk menentukan nombor perdana. Mereka menggunakan kaedah ad hoc untuk membina sebuah bulatan atau elips dan mengembangkan sebuah teori kon yang menyeluruh; mereka mengambil banyak formula yang berbagai untuk keluasan dan isi padu, dan menyimpulkan kaedah-kaedah untuk mengasingkan formula yang betul daripada yang salah, serta menghasilkan formula-formula am.

Bukti-bukti abstrak tercatat yang pertama adalah dalam bahasa Greek, dan semua kajian logik yang masih wujud berasal daripada kaedah-kaedah yang disediakan oleh Aristotle. Dalam karyanya, Unsur-unsur, Euclid menulis sebuah buku yang telah dipergunakan sebagai buku teks matematiks di seluruh Eropah, Timur Dekat, dan Afrika Utara selama hampir dua ribu tahun. Selain daripada teorem-teorem geometri yang biasa seperti teorem Pythagorus, Unsur-unsur merangkumi suatu bukti yang menunjukkan bahawa punca kuasa dua adalah suatu nisbah, dan bilangan nombor perdana adalah tidak terhingga.

Sesetengah cendekiawan mengatakan bahawa Archimedes (287 – 212 SM) dari Syracuse ialah ahli matematik Greek yang terunggul, jika bukan ahli matematik yang terunggul di seluruh dunia sehingga masa ini. Menurut Plutarch, Archimedes dilembing oleh seorang askar Rom semasa menulis formula-formula matematik pada debu ketika berumur 75 tahun. Masyarakat Rom tidak meninggalkan banyak bukti tentang minat mereka terhadap matematik tulen.

 

kkawan blogspot 2013 Copyright © 2013 - |- Template created by PaksuTrubo - |- Powered by Blogger Templates